Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene.
نویسندگان
چکیده
Heart-type fatty acid binding protein (H-FABP), abundantly expressed in cardiac myocytes, has been postulated to facilitate the cardiac uptake of long-chain fatty acids (LCFAs) and to promote their intracellular trafficking to sites of metabolic conversion. Mice with a disrupted H-FABP gene were recently shown to have elevated plasma LCFA levels, decreased cardiac deposition of a LCFA analogue, and increased cardiac deoxyglucose uptake, which qualitatively establishes a requirement for H-FABP in cardiac LCFA utilization. To study the underlying defect, we developed a method to isolate intact, electrically stimulatable cardiac myocytes from adult mice and then studied substrate utilization under defined conditions in quiescent and in contracting cells from wild-type and H-FABP(-/-) mice. Our results demonstrate that in resting and in contracting myocytes from H-FABP(-/-) mice, both uptake and oxidation of palmitate are markedly reduced (between -45% and -65%), whereas cellular octanoate uptake, and the capacities of heart homogenates for palmitate oxidation and for octanoate oxidation, and the cardiac levels of mRNAs encoding sarcolemmal FA transporters remain unaltered. In contrast, in resting H-FABP(-/-) cardiac myocytes, glucose oxidation is increased (+80%) to a level that would require electrical stimulation in wild-type cells. These findings provide a physiological demonstration of a crucial role of H-FABP in uptake and oxidation of LCFAs in cardiac muscle cells and indicate that in H-FABP(-/-) mice the diminished contribution of LCFAs to cardiac energy production is, at least in part, compensated for by an increase in glucose oxidation.
منابع مشابه
پاسخ متفاوت سلولهای قلبی به اسیدهای چرب اشباع و غیر اشباع
Introduction & Objective: The link between dietary fat and coronary heart disease has attracted much attention since the effect of long?chain fatty acids (LCFA) on gene transcription has been established, which in part, these effects can be explained by the regulation of gene transcription. In this study, the P19CL6 cardiac cell?line was targeted for the investigation of (i) the effects of long...
متن کاملEffects of feed restriction and dietary fat type on mRNA expression of liver fatty acid-binding protein (L-FABP) in broilers
Background: Liver fatty acid-binding protein (L-FABP) is the main cytosolic binding site for long chain fatty acids in hepatocytes. FABPs enhance the uptake of fatty acids into the cell by increasing their concentration due to decreasing concentration of unbound fatty acids inside the cell. Objectives: The aim of this study was to evaluate the effects of dietary unsaturated to saturated fatty a...
متن کاملRequirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization.
Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long-chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart-type FABP (H-FAB...
متن کاملRapid Diagnosis of acute kidney injury (AKI) associated with cardiac surgery, using the liver type fatty acid binding protein (L-FABP) biomarker
Abstract Background and objectives: cardiac surgery is often associated with acute kidney injury (AKI). Nowadays, AKI is typically diagnosed by an increase in serum creatinine, which is a delayed and unreliable biomarker. Recent studies recommended using the liver type fatty acid binding protein (L-FABP) as an early biomarker. Material and Methods: The urine samples of 18 adult patients undergo...
متن کاملNew insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36.
Long-chain fatty acids are an important source of energy for several cell types, in particular for the heart muscle cell. Three different proteins, fatty acid translocase (FAT)/CD36, fatty acid transport protein and plasma membrane fatty acid binding protein, have been identified as possible membrane fatty acid transporters. Much information has been accumulated recently about the fatty acid tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 85 4 شماره
صفحات -
تاریخ انتشار 1999